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The Second-Order Tune Shift with Amplitude

for Octupole-induced Resonances in Storage Ring

The purpose of this note is to analyze the octupole-induced resonances,
to lowest order, in a synchrotron and storage ring. When the Hamiltonian
with octupole term is transformed to action-angle variables, it is found that
the amplitude-dependent tune shift terms are composed of two types: terms of
second-order in betatron oscillation amplitude of a particle and terms of fourth-
order in oscillation amplitude. Obtaining fourth-order terms requires complicated
analysis even with the first-order perturbation theory employed. Treatment of
this analysis will be the subject of a subsequent note. Second-order terms are

straightforward and simple to calculate, and therefore we treat them here first.

The Hamiltonian for a general octupole field in a storage ring is given by:
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where A, is the vector potential and Bp is the magnetic rigidity.

Normal octupole component:
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Skew octupole component:
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Total scaled Hamiltonian, including both quadrupole and normal octupole terms,



is then given by :
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where B" = 8°B,/0z°.
The equations of motion corresponding to the octupole term are:
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We now perform the canonical transformation to action-angle variables via the

generating function:
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where « and ( are the usual Twiss parameters:

_i dg, doy
2 ds’ ds

oy = =B,K;,—v. ;z=z,y. (7)

The old variables can then be expressed in terms of action and angle variables,

2z =\/208,J, cos ¢,

¥4

B=

8
%zjz-cos bo(tan ¢, + az). ®

It is easy to see that the actions J; and Jy are constants of the motion for the
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unperturbed Hamiltonian. They are given by:
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where ¢, is the emittance of a beam in the z-plane. The new Hamiltonian is then



determined from
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As a result, the linear term of the new Hamiltonian is
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and the octupole term is
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V can be rewritten as:
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In the above equation, the terms that are independent of ¢ introduce the

lowest-order tune shift with amplitude (which is the second-order in oscillation



amplitude). The ¢ -dependent terms are then the object of the canonical pertur-
bation theory, which leads to the fourth-order tune shift with amplitude. This
will be described in a subsequent note. Here we consider the ¢-independent terms

only.
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From this we can directly extract the tune shifts, which are given by
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In order to relate the above expressions to those given by Collins [1], who reached

the same formula by a different approach, we define:
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Finally, summing over all the octupoles around the ring, we have:

2rAvy = a*(3/8)Tm — b*(3/4)Em

2rAvy = —a*(3/4)Em + b*(3/8)Tm
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